
Privilege Escalation Attack Detection Method for Android
Applications

Hui Li1,a, Limin Shen2.b.*, Chuan Ma2.c, Meimei Wang2.d, Honglei Tan3,e and Hongwei Zhang4,f
1School of Information Science and Engineering, YanshanUniversity; School of Business
Administration, Hebei Normal University of Science &Technology, Qinhuangdao, China
2School of Information Science and Engineering YanshanUniversity, Qinhuangdao, China

3School of Continuing Education YanshanUniversity, Qinhuangdao, China
4School of Business Administration, Hebei Normal University of Science &Technology ,

Qinhuangdao, China
a. lh_23@163.com, b. shenllmm@sina.com, c. tianyi_mc@126.com,

d. wantong_ysu@163.com, e. thl_23@163.com, f. chengxuedong007@126.com
*corresponding author: Limin Shen

Keywords: Privilege escalation attack, privacy data, component communication, role
model, sensitive path pairs.

Abstract:For the problem of the user’s privacy data obtained through conspiracy attack
with privilege escalation in a number of applications of the Android system, the detection
method was proposed based on permission, component communication, data flow and role
model. We classified the roles based on the detection of component’s communication,
component’s permission and sensitive path pairs of application’s components, and finally
the sensitive information flow paths in multi-role were detected, thereby the detection
method constituting to privilege escalation attack for multi-application was ascertained. The
experience result showed that we proposed method was effective for detect privilege
escalation attack, and pointed out applications with potential security hazards.

1. Introduction

With the popularity of Smartphone and the expansion of the mobile Internet, it has become an
indispensable part of learning, living, entertainment, and transportation. A new mobile Internet
service is proposed based on applications in order to adapt to the development of mobile Internet at
the background of constantly promoting Industrial 4.0 Development[1,2]. Android operating system,
which accounts for 37.55% of OS market share[3], will become the top choice for enterprises and
individual users. However, Android Smartphone not only faces the problem of mobile phone
quality defects, but also faces the threat of malware to enterprise and personal information[4,5].
According to the threat report released by Nokia Threat Intelligence Laboratories, Android devices
were responsible for 47.15% of the observed malware infections in mobile networks[6]. According
to the "China mobile phone security report in the first quarter of 2020" released by 360 Internet
Security Center, 392,000 new malicious applications were added to mobile platform[7].

Attack on Smartphone is no longer limited to single and isolated intrusion and attack behaviors,
coordinated collusion attack have emerged, for example compound attacks, multithreading attacks,

2020 International Conference on Computer, Network, Communication and Information Systems (CNCI 2020)

Published by CSP © 2020 the Authors 761



distributed intrusions, and coordinated attack[8]. The behavior of a single program will not threat to
system security, but the combined effect of several concurrency programs may have serious
consequences[9]. Traditional methods such as vulnerability detection and privacy detection are
difficult to cope with coordinated collusion attack. The Smartphone obtain software and hardware
information in the device and stealing enterprise information and user privacy data by privilege
escalation and coordinated collusion attack.

Aiming at the multi-application collusion privilege escalation attack of Android, we established
privilege escalation attack roles model, and detected sensitive information flow path in multi-
application based on this model, thereby the application constituting the privilege escalation attack
and application’s role were determined.

2. Related Work

For Android security threats, such as privilege escalation attack, Felt et al.[10] proposed IPC
Inspection to prevent privilege escalation attack and it must reduce the set of permissions and delete
the permissions that other applications do not have, when an application receives messages from
other applications. Verma et al.[11] put forward a hybrid method for Android malware by analyzing
the permissions of the AndroidManifest.xml file and the Intents. Feizollah et al.[12] used the
evaluation of Intents (explicit and implicit) as the way to identify malicious applications. Bedford et
al.[13] used machine learning and static analysis to detect Android malicious applications. Cam et
al.[14] proposed using static and dynamic analysis to detect sensitive resource accessing and
leakage. Wang Cong et al.[15] proposed detection methods of privilege escalation attack based on
component, application layer and stacking defect. Yu Da[16] proposed monitoring the list of
parameters in the function code to indentify sensitive information, and divided the code function
into permission leak function and privacy leak function. DroidAuditor[17] used the Android
Security Modules access control architecture to detect application-layer privilege escalation attacks.
Wu Dong-Jie et al.[18] proposed a method for detecting Android malware based on static feature
mechanism. Dasgupta et al.[19] introduced a multi-user permission strategy based on user requested
information sensitivity, access control charts and a set of permission grantees.

3. Role Model of Privilege Escalation Attack

The Android platform uses the permission mechanism to control access to sensitive APIs. The latest
Android version adopts that apply for dangerous permission on runtime. When application wants to
access sensitive resources during the running process, it will apply for permission. Once the user
authorized, the user will be authorized forever. However, Android's permission mechanism has the
threat of privilege escalation attack[20].

3.1.Privilege Escalation Attack Case

The privilege escalation attack model describes a problem with the privilege mechanism: for an
application with less permission, it can access components of the application that have more
permission than itself, thereby gaining permissions that it does not have. Privilege escalation attack
can be divided into two categories[21]: the first is confusing agent attack that using an unprotected
interface of safety applications, and the other is conspiracy attack that combining multi-application
to gain greater privilege.

Applications A, B, and C were run independently. Applications A, B, and C were the client of
the enterprise information system or the application installed into user's Android device.
Application A was responsible for the collection of information, application B was responsible for

762



the delivery of information, and application C used SEND_SMS dangerous permissions to send
sensitive information. The privilege escalation process of the three applications is shown in Figure 1,
which shows that:

Figure 1: Privilege escalation process.

(1) Three applications implemented the promotion of the dangerous permission "SEND_SMS".
(2) Three applications used Intent communication, then it got sensitive data through

getInent().getExtras(), getString() methods, sent sensitive data through putString(), putExtras()
methods, and finally realized unauthorized sending of sensitive information.

3.2. Construct Roles Model of Privilege Escalation Attack

Based on the concept and case of privilege escalation attack, the App was divided into three types of
roles: searching information App, information delivery App, and information sending App. For the
convenience of description, the following definitions were given.

Definition 1: Searching Information App. It refers to obtain the privacy information of
enterprises or users in various ways, represent by SIApp.

Definition 2: Information Delivery App. It refers to transfer privacy information to other
applications through inter-application communication, represent by IDApp.

Definition 3: Information Sending App. It refers to use dangerous APIs to send privacy
information or to perform destructive operations, represent by ISApp.

Definition 4: Enter Events. It refers to App’s components have events that obtains data passed by
other components, represent by EET.

Definition 5: Outside Events. It refers to App’s components have events that send data to other
components, represent by OET.

Definition 6: Carry Data Events. It refers to the EET/OET components that carry data, represent
by CDE.

Definition 7: Dangerous Events. It refers to call sensitive APIs or sensitive data flow, such as
privacy leaks or dangerous operations, represent by DGE.

Definition 8: App’s permission. App A has P1 permission, represent by A.P1.
Definition 9: Component’s permission. Component Com of Application A has P1 permission,

represent by A.Com.P1.
Definition 10: Sensitive information flow path. There are sensitive information flow path among

the three roles which constitute privilege escalation attack, represent by SFP.
Based on Definition1-9, the roles of privilege escalation attack were modelled:
Model of SIApp: Component Com has OET(OET.CDE) at least. That is,

�Ꙩ̖ڀڀ 㰠 ̕�Ꙩ̖ڀڀˢ斸̓⺠ˢ㇠ˢ櫸 � �Ꙩ̖ܣܣˢ斸̓⺠ˢ㇠ˢ櫸ˢ斸݉ˢǤ (1)

Model of IDApp: Component Com has EET(EET.CDE)/OET(OET.CDE) and dangerous
permission P1at least. That is,

763



Ꙩ̖݉ڀڀ 㰠 �ܫܣˢڀڀꙨ̖݉݌ˢ斸̓⺠ˢ㇠ˢ櫸ڀڀꙨ̖݉݌ˢ斸̓⺠ˢˢˢ櫸ڀڀꙨ̖݉݌̕ �
�ܫܣˢڀڀꙨ̖݉݌ˢ斸̓⺠ˢ㇠ˢ櫸ˢ斸݉ˢڀڀꙨ̖݉݌ˢ斸̓⺠ˢˢˢ櫸ˢ斸݉ˢڀڀꙨ̖݉݌ �

�ܫܣˢڀڀꙨ̖݉݌ˢ斸̓⺠ˢ㇠ˢ櫸ˢ斸݉ˢڀڀꙨ̖݉݌ˢ斸̓⺠ˢˢˢ櫸ڀڀꙨ̖݉݌ �
�ǤܫܣˢڀڀꙨ̖݉݌ˢ斸̓⺠ˢ㇠ˢ櫸ڀڀꙨ̖݉݌ˢ斸̓⺠ˢˢˢ櫸ˢ斸݉ˢڀڀꙨ̖݉݌ (2)

Model of ISApp: Component Com has EET(EET.CDE),DGE and dangerous permission P1.
That is,

ISApp 㰠 ISAppˢComˢ݌݌̕ EET݌ISAppˢComˢP݌ܫISAppˢDGE� �
ISAppˢDGE�Ǥ݌ܫISAppˢComˢP݌ISAppˢComˢEETˢCDE݌ (3)

4. Key Technologies and Algorithms of Detection Method

4.1.Design of Detection Method

Based on roles model, the design of the detection method is shown in Figure 2.

Figure 2: Design of detection method.

4.2.Detection Component Communication

The Android framework provides four types of components for application[22].
(1) Activity (user interface) focuses on user behavior.
(2) Service (background service) implements background activities.
(3) Content Provider defines storage like a database.
(4) Broadcast Receivers listen for global events.
Communication between different components in Android applications is achieved through

Intent mainly. Activity, Service, Broadcast Receiver were started through canned Intent's "Call
Intention". If the application just wants to start components with certain features, Intent can realize
coupling without a specific component, which is benefit to high-level uncoupling. Similarly, Intent
can communicate between different components in different applications. Android has a perfect
communication mechanism between components. Components can restrict access to other
components through permission or label protection.

1) Detection EET/OET. An unencrypted APK is decompiled and converted into Smali file for
analysis and detection. Smali files are the core code of executed Dalvik VM. For any single Smali
file, information (such as classes, packages, inheritance, interfaces, functions and function calls and
etc.) can be obtained. EET/OET of the APK components was detected and stored it as two-
dimensional tables. The detection methods were as follows:

764



Step 1: According to each method (such as direct method / virtual method), get function call
relationship;

Step 2: Detect special function calls (such as getExtras, putExtras, etc.);
Step 3: Generate the component’s "EET / OET" table.
2) Detection Permission. AndroidManifest.XML provides the Android system with the necessary

information to run the application. Whether the permission mechanism uses runtime applied for
permission or installation-time applied for permission, relevant information must be registered in the
AndroidManifest.XML. AndroidManifest.XML contains the application’s package name,
registration components, registration component function, declaring what permissions must apply for
to access protected content in the API.The detection methods were as follows:

Step 1: Get information of the application’s permissions and registration components according to
the tags;

Step 2: Get information of the component's permissions according to the tags;
Step 3: Save the permission detection into the component’s “EET/OET” table;
Step 4: Generate the component’s “permission + EET / OET” table.

4.3.Detection Date Flow

Sensitive API set was constructed firstly, and then sensitive data flow detection was performed using
FlowDroid [23].

4.3.1.Construct Sensitive API Set

In Android permission system, permissions are divided into normal and dangerous[22]. Normal
permissions do not threaten user’s privacy directly, such as network connection status permission
ACCESS_NETWORK_STATE. Dangerous permissions allow users to access sensitive data, such as
permission READ_CONTACTS that get contact list. Google's official documents provide a list of
normal and dangerous permissions. Kathy et al. developed PScout[24], it analyzed and summarized
permissions of multiple versions of Android system and their corresponding API relationships.
Sensitive API set was constructed base on above two points. The corresponding relationship between
SEND_SMS permission and sendTextMessage () API in privilege escalation attack case is shown in
Table 1.

Table 1: Examples of sensitive API sets.

4.3.2.Detection Sensitive Data Flow

FlowDroid is a static stain analysis tool for Android applications, and analysis system calls through
accurate Android life cycle model.

Definition 11: Sensitive Path Pairs. In order to illustrate the origination of source, sink and system
calls, represent by (source, sink), source consists of two parts: originating component.calling

Permission corresponding APIs
SEND_SMS void enforceReceiveAndSend(java.lang.String)

void sendTextMessage(java.lang.Strng.java.lang.String,
booleancopyMessageToIccEf(int,byte[],byte[])
booleanupdateMessageOnIccEf(int,int,byte[])

…

765



function/originating class. calling function. For example, component A. methodA represents
component A calling method A; class B. methodB represents class B calling method B. The
expression for sink is the same as source. The complete expression is as follows:

(Originating Component.Calling Function/Originating Class.Calling Function, Originating
Component. Calling Function / Originating Class. Calling Function), represent by SSP.

FlowDroid was used to detect the sensitive data flow of the application, so SSP (Definition 11)
was got. SSP was added to the table that generated by detection permission, then the component’s
"permission + EET / OET + SSP" table was formed.

4.4.Detection SFP

Step 1: Store detection component results. According to the detection results of the application, each
component in the application was represented and stored in an array, such as: application’s name.
component’s name (Permission, EET, EET. CDE, OET, OET. CDE, SSP). If there is no content, it is
expressed by NULL.

Step 2: Construct the basic search algorithm. A string with "application name. component name"
as an array object was constructed for test application. Each item in the array was feature of the
application component. An extended BF algorithm was used to store the final results. The result was
stored into array object string.

Algorithm 1: BF algorithm base on object feature
Input： array object string T，search object P
Output：array object string result
1. n=T.length
2. m=P.length
3. for s=0 to n-m
4.if P[1…m] ==T[s+1,s+m]
5. print (P,T[s]) //T[s] searched array object
6. add(P,T[s]) to array object string result

Step 3: Roles identification. Base on component’s array and roles model, the role of application
was identified.

Algorithm 2: Roles identification
Input：array object string comArray, string IDAppModel,

string ISAppModel, string SIAppModel
Output：String IDAppArray，String ISAppArray，

String SIAppArray
1.for each arrayObject in comArrary string
2. if comArrayObji accord with IDAppModel Then
3. add comArrayObji to IDAppArray
4. else if comArrayObji accord with ISAppModel Then
5. add comArrayObji to ISApparray
6. else if comArrayObji accord with SIAppModel Then
7. add comArrayObji to SIAppArray
8. end if
9.print IDAppArray, ISAppArray, SIAppArray

766



Step 4: Detection SFP (Definition 10) algorithm. For the application of three types of roles, the
ISApp and SIApp were searched from IDApp as the starting point. If there is a sensitive information
flow path was constituted privilege escalation attack.

Algorithm 3: Detection SFP
Input：String IDAppArray，String ISAppArray，

String SIAppArray
Output：SFP
1. arrayObj0=getStartPoint(IDAppArray)
2. for each arrayObject in IDAppArray
3. call Algorithm1(ISAppArray, arrayObj0)
4. print array object result1 //IDApp and ISApp have path
5. searchArrayObj0=result1[0][0]
6. k= result1.length
7. for i=0 to result[0][k-1]
8. call Algorithm1(SIAppArray,searchArrayObji)
9. print array object result2 //IDApp and SIApp have path
10. Combine reult1 and result2 then add to SFP
11. print SFP

5. Method Experiment

5.1.Detection the Case

This method was used to detect the case of privilege escalation attack in Section III.
1. Detection Component’s EET/OET. According to component communication detection method

in Section IV, the component sendNewsToFriend of application B was detected, as shown in Table
2.

Table 2: Detection EET/OET of sendNewsToFriend.

Detection content Detection result
ComponentName sendNewsToFriend

EET getInent().getExtras()
EET.CDE getString()
OET Action:sendInfor

OET.CDE putString(),putExtras()

2. Detection Component’s Permission. According to permission detection method in Section IV,
the components, permission and Intent of application B were detected, as shown in Table 3.

Table 3: Detection component,permission and Intent.

MainActivity Intent_action:android_intent_action
_MAIN

android.permission.INTERNET
android.permission.SEND_SMS

sendNewsToFriend Intent_action:transmitInfor android.permission.INTERNET
android.permission.SEND_SMS

767



3. Generate Component’s table “Permission+EET/OET”. The table “Permission+EET/OET” of
component sendNewsToFriend was generated by Combine Table 2 and Table 3, as shown in Table
4.

Table 4: Detection component sendNewsToFriend communicate.

Detection content Detection result
ComponentName sendNewsToFriend
Intent/Intent_action Intent_action:transmitInfor

Permission android.permission.INTERNET
android.permission.SEND_SMS

EET getInent().getExtras()
EET.CDE getString()
OET Action:sendInfor

OET.CDE putString(), putExtras()

4. Detection SSP. FlowDroid was used to detect application B, which had a pair of (source, sink)
sensitive data flow. That is: (Bundle.getString(“phoneNum”)/sendNewsToFriend.onCreate()+Bund
le.getString(“userName1”)/sendNewsToFriend.onCreate(), Bundle.putString()/sendNewsToFriend.
backBtn()). As shown in Table 5.

Table 5: Detection component sendNewsToFriend SSP.

Detection content Detection result
ComponentName sendNewsToFriend

Source Bundle.getString(“phoneNum”)/sendNewsToFriend.onCreate()
Bundle.getString(“userName1”)/sendNewsToFriend.onCreate()

Sink Bundle.putString()/sendNewsToFriend.backBtn()

SSP
(Bundle.getString(“phoneNum”)/sendNewsToFriend.onCreate()
+Bundle.getString(“userName1”)/sendNewsToFriend.onCreate()

,Bundle.putString()/sendNewsToFriend.backBtn())

5. Generate Component’s table “Permission+EET/OET+SSP”. The complete detection result of
component sendNewsToFriend was generated by Combine Table 4 and Table 5, as shown in Table
6.

768



Table 6: Detection component sendNewsToFriend completely.

Detection content Detection result
ComponentName sendNewsToFriend
Intent/Intent_action Intent_action: transmitInfor

Permission android.permission.INTERNET
android.permission.SEND_SMS

EET getInent().getExtras()
EET.CDE getString()
OET Action:sendInfor

OET.CDE putString(), putExtras()

Source Bundle.getString(“phoneNum”)/sendNewsToFriend.onCreate()
Bundle.getString(“userName1”)/sendNewsToFriend.onCreate()

Sink Bundle.putString()/sendNewsToFriend.backBtn()

SSP
(Bundle.getString(“phoneNum”)/sendNewsToFriend.onCreate()+
Bundle.getString(“userName1”)/sendNewsToFriend.onCreate(),B

undle.putString()/sendNewsToFriend.backBtn())
6. Repeat Step1-Step5 to complete the detection of components collectActivity and sendMessage

in application A and application C. The complete test results of application A's component collectA
ctivity and application C's component sendMessage were shown in Table 7 and Table 8.

Table 7: Detection component collectActivity completely.

Detection content Detection result
ComponentName collectActivity
Intent/Intent_action Intent_action:android_intent_action_MAIN

Permission NULL
EET NULL

EET.CDE NULL
OET Action: transmitInfor

OET.CDE putString(), putExtras()
Source NULL
Sink NULL
SSP NULL

Table 8: Detection component sendMessage completely.

Detection content Detection result
ComponentName sendMessage
Intent/Intent_action Intent_action:sendInfor

Permission android.permission.SEND_SMS
EET getInent().getExtras()

EET.CDE getString(),getExtra(keyInfor)
OET NULL

OET.CDE NULL
Source Bundle.getString()/sendMessage.onCreate()
Sink Log/sendMessage.sendSMSMessage

SSP (Bundle.getString()/sendMessage.onCreate()，
Log/sendMessage.sendSMSMessage)

769



7. Indentify roles. According to the role model in Section III and algorithm 2, the roles of applica
tion A, B and C were indentified.

(1) According to Equation (2) and algorithm 2, the model of Application B is shown in Equation
(4):

B 㰠 BˢsendNewsToFriendˢEETˢCDE݌
݌ Bˢ sendNewsToFriendˢOETˢCDE ݌ BˢINTERNET�

݌݌ �ˢ݌ ��������櫸̓�	����ˢˢˢ櫸ˢ斸݉ˢ ݌
�ˢ ��������櫸̓�	����ˢ㇠ˢ櫸ˢ斸݉ˢ ݌ �ˢ�ˢ�݉����� (4)

So application B belongs to IDApp。

(2) According to Equation (1) and algorithm 2, the model of Application A is shown in Equation
(5):

̖ 㰠 ̖ˢ�̓䁣䁣��䁈̖�䁈�r�䁈hˢ㇠ˢ櫸ˢ斸݉ˢ (5)

So application A belongs to SIApp.
(3) According to Equation (3) and algorithm 2, the model of Application C is shown in Equation

(6):

斸 㰠 斸ˢ��������吾⁪�ˢˢˢ櫸ˢ斸݉ˢ ݌
斸ˢ��������吾⁪�ˢ�ˢ�݉���� ݌ 斸ˢ݉�ˢ̖ (6)

So application C belongs to ISApp.
8. Detection SFP. (A.collectActivity)—>(B.sendNewsToFriend)—>(C.sendMessage) can be

obtained by using algorithm 3. Three applications constituted privileged escalation attack.

5.2.Experimental Evaluation

The key steps of this detection method were sensitive data flow detection, role identified and
dangerous path detection. The time complexity of the algorithm is O ((n-m+1) m) at worst and O (n)
at best. Because the paths of sensitive data caller and callee are different, the time cost and space
cost distribution was hashed when sensitive data flows were detected. 54 Android APKs of the
sample were tested, and time cost and space cost were shown in Figure 3(a) and Figure 3(b).

(a) Cost time (b) Cost space
Figure 3: Cost time and Cost space.

770



5.3.Method Comparison

It can be seen that after APK detection, the following contents can be obtained:
(1) Multi-application that constitutes privilege escalation attack in APK sample was detected.
(2) The APK had the risk of permission and component, and its role was indentified.
(3) The APK with potential safety hazards was indentified.
According to the component-based detection method in reference[15], 54 APKs were tested, and

the comparison was shown in Table 9. Thus, we proposed method that can detect the privileges
escalation attack and risks effectively.

Table 9: Detection data comparison.

component-based detection Our method
Application with permission risk 53.7% 94.4%
Application with component risk 53.7% 87.0%
Application constituted privilege

escalation attack 0% 5.5%

Safe Application 46.3% 27.8%

5.4.Experimental Validity

48 Apps were extracted from the Android application market such as Google Play, and 3Apps for
enterprise information management and 3 experimental Apps were developed by our research team,
those constituted the sample set together. The validity of this method was verified by testing the
sample set.

In order to detect different kinds of applications and applications of the same enterprise or
developer, 13 types of Apps were selected in the sample set, which 18.5% came from the same
enterprise or developer. The results showed that IDAPP accounted for 31.5%, while safe application
accounted for 27.8%, and three APPs were detected to constitute privilege escalation attack, as
shown in Table 10.

Table 10: Role Distribution of privilege escalation attack.

Role Number Percentage
SIAPP 2 3.7%
IDAPP 17 31.5%
ISAPP 3 5.5%

Application with potential security hazards 17 31.5%
Safe application 15 27.8%

Application constituted privilege escalation attack 3 5.5%

6. Conclusions

We proposed a detection method of privilege escalation attack based on permissions, components,
roles model, component communication and data flow. Firstly, the design of the detection method
was given, and component’s communication and date flow detection were carried out. Then the role
of application was indentified, and SFP among multiple applications were searched, so the
applications of privilege escalation attacks were detected. Finally, the correctness of this method was
proved by the case. The validity of this method was verified by 54 APKs. Experiments showed that
we proposed method can detect the attack and the potential security hazards effectively. It is more

771



comprehensive than the traditional detection method. Therefore, it has great significance to prevent
enterprise and user information from leaking through Android application privilege escalation attack.
However, we have further work to be done:

(1) There are false alarms. If the communication between applications is normal, it will lead to
false alarm. The next step will be to improve the model in order to eliminate false alarm.

(2) Improve the accuracy of the method. In order to improve the accuracy of the method, the
construction of role model and sensitive API set needs to be further refined and strengthened.

Acknowledgments

National Natural Science Foundation of China(No. 61772450), Natural Science Foundation of
Hebei Province(No.F2017203307), and Science and Technology Project of Hebei
Province(No.17210701D).

References

[1] P. Wang, S. L. Ge, N. X. Wang, Y. H. Pan, and N. Ren, “MIS 4.0 Research for Industrie 4.0,” Computer Integrated
Manufacturing Systems, vol.22, no.7, pp. 1812-1820, 2016.

[2] S. Li, “Research and Implementation of Mobile Terminal Oriented Enterprise Information System,” Beijin: North
China Electric Power University, 2016.

[3] “Os-Market-Share in January 2019”, Available athttp://gs.statcounter.com/os-market-share,Last accessed
onJanuary 11, 2019.

[4] “China Mobile Phone Security Ecology Research Report in 2018”, Available at
http://zt.360.cn/1101061855.php?dtid=1101061451&did=610082749, Last accessed onFebruary1, 2019.

[5] S. Zhang, J. Y. Wu, W. G. Fan, and S. K. Liu, “Defect Discovery of Phones based on Social Media Analytics,”
Computer Integrated Manufacturing Systems, vol.22, no.9, pp. 2264-2273, 2016.

[6] “Nokia Threat IntelligenceReport-2019”, Available athttps://networks.nokia.com/solutions/threat-intelligence,Last
accessed onJanuary 30, 2019.

[7] “China mobile phone security report in the first quarter of 2020”, Available at
https://zt.360.cn/1101061855.php?dtid=1101061451&did=610519685, Last accessed on May 15, 2020.

[8] G. L. Jin, L. H. Song, W. Zhang, and S. Lu, “Automated Atomicity-Violation Fixing,” Proceedings of the 32nd ACM
SIGPLAN Conference on Programming Language Design and Implementation,pp. 389-400,2011.

[9] G. Geeraerts, A. Heubner, and J. F. Raskin, “On The Verification of Concurrent, Asynchronous Programs with
Waiting Queues,” ACM Transactions on Embedded Computing Systems, vol.14, no.3, pp. 1-26, 2015.

[10] A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and E. Chin, “Permission re-delegation: attacks and defenses”,
SEC'11 Proceedings of the 20th USENIX conference on Security, pp. 22-22, 2011.

[11] S. Verma and S. K. Muttoo, “An Android Malware Detection Framework-based on Permissions and Intents,”
Defence Science Journal, vol.66, no.6, pp. 618-623, 2016.

[12] A. Feizollah, N. B. Anuar, R. Salleh, G. Suarez-Tangil, and S. Furnell, “AndroDialysis: Analysis of Android Intent
Effectiveness in Malware Detection,” Computers and Security, vol.65, pp. 121-134, 2017.

[13] A. Bedford, S. Garvin, J. Desharnais, N. Tawbi, H. Ajakan, F. Audet, and B. Lebel, “Andrana: Quick and Accurate
Malware Detection for Android,” Foundations and Practice of Security - 9th International Symposium, pp. 20-
35,2017.

[14] N. T. Cam and N. C. H. Phuoc, “NeSeDroid-Android Malware Detection based on Network Traffic and Sensitive
Resource Accessing,” Proceedings of the International Conference on Data Engineering and Communication
Technology, pp. 19-30, 2017.

[15] C. Wang, R. B. Zhang, and G. Li, “Technology of Detection for Privilege Escalation Attack on Android,”
Transducer and Microsystem Technologies, vol.36, no.1, pp. 146-148, 2017.

[16] D. Yu, “Research and Implementation of A Detection Method for Privilege Escalation Attack of Android
System,”Bei Jing: Peking University, 2013.

[17] S. Heuser, M. Negro, P. K. Pendyala, and A. R. Sadeghi, “DroidAuditor: Forensic Analysis of Application-Layer
Privilege Escalation Attacks on Android,”International Conference on Financial Cryptography and Data Security,
pp.260-268, 2017.

772

http://zt.360.cn/1101061855.php?dtid=1101061451&did=610082749
https://networks.nokia.com/solutions/threat-intelligence


[18] D. J. Wu, C. H. Mao, T. E. Wei, H. M. Lee, and K. P. Wu, “DroidMat: Android Malware Detection through
Manifest and API Calls Tracing,”Proceedings of the 2012 Seventh Asia Joint Conference on Information
Security,pp.62-69, 2012.

[19] D. Dasgupta, A. Roy, and D. Ghosh, “Multi-User Permission Strategy to Access Sensitive Information,”
Information Sciences,pp. 24-49, 2018.

[20] L. Davi, A. Dmitrienko, A. R. Sadeghi, and M. Winandy, “Privilege Escalation Attacks on Android,” Proceedings
of the 13th international conference on Information security,pp. 346-360, 2011.

[21] J. W. Zhu, L. W. Yu, Z. Guan, and Z. Chen, “A Summary of Android Security,” Application Research of
Computers,vol.32, no.10, pp.2881-2885, 2015.

[22] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android Permission Demystified,” Proceedings of the
18th ACM conference on Computer and communications security, pp. 627-638,2011.

[23] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Traon, D. Octeau, and P. McDaniel, “FlowDroid:
Precise Context, Flow, Field, Object-Sensitive and Lifecycle-Aware Taint Analysis for Android Apps,” Proceedings
of the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation,pp. 259-269, 2014

[24] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “PScout: Analyzing The Android Permission Specification,”
Proceedings of the 2012 ACM conference on Computer and communications security,pp.217-228, 2012.

773


	1.Introduction
	2.Related Work
	3.Role Model of Privilege Escalation Attack
	3.1.Privilege Escalation Attack Case
	3.2. Construct Roles Model of Privilege Escalation Att
	4.Key Technologies and Algorithms of Detection Metho
	4.1.Design of Detection Method
	4.2.Detection Component Communication
	4.3.Detection Date Flow
	4.4.Detection SFP
	5.Method Experiment
	5.1.Detection the Case
	5.2.Experimental Evaluation
	5.3.Method Comparison
	5.4.Experimental Validity
	6.Conclusions
	Acknowledgments
	References



